Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Russian Journal of Infection and Immunity ; 12(3):409-423, 2022.
Article in Russian | EMBASE | ID: covidwho-2267367

ABSTRACT

Current review presents a brief overview of the immune system dysregulation during acute COVID-19 and illustrates the main alterations in peripheral blood CD4+ T-cell (Th) subsets as well as related target cells. Effects of dendritic cell dysfunction induced by SARS-CoV-2 exhibited decreased expression of cell-surface HLA-DR, CCR7 as well as co-stimulatory molecules CD80 and CD86, suggesting reduced antigen presentation, migratory and activation capacities of peripheral blood dendritic cells. SARS-CoV-2-specific Th cells could be detected as early as days 2-4 post-symptom onset, whereas the prolonged lack of SARS-CoV-2-specific Th cells was associated with severe and/or poor COVID-19 outcome. Firstly, in acute COVID-19 the frequency of Th1 cell was comparable with control levels, but several studies have reported about upregulated inhibitory immune checkpoint receptors and exhaustion-associated molecules (TIM3, PD-1, BTLA, TIGIT etc.) on circulating CD8+ T-cells and NK-cells, whereas the macrophage count was increased in bronchoalveolar lavage (BAL) samples. Next, type 2 immune responses are mediated mainly by Th2 cells, and several studies have revealed a skewing towards dominance of Th2 cell subset in peripheral blood samples from patients with acute COVID-19. Furthermore, the decrease of circulating main Th2 target cells - basophiles and eosinophils - were associated with severe COVID-19, whereas the lung tissue was enriched with mast cells and relevant mediators released during degranulation. Moreover, the frequency of peripheral blood Th17 cells was closely linked to COVID-19 severity, so that low level of Th17 cells was observed in patients with severe COVID-19, but in BAL the relative number of Th17 cells as well as the concentrations of relevant effector cytokines were dramatically increased. It was shown that severe COVID-19 patients vs. healthy control had higher relative numbers of neutrophils if compared, and the majority of patients with COVID-19 had increased frequency and absolute number of immature neutrophils with altered ROS production. Finally, the frequency of Tfh cells was decreased during acute COVID-19 infection. Elevated count of activated Tfh were found as well as the alterations in Tfh cell subsets characterized by decreased "regulatory" Tfh1 cell and increased "pro-inflammatory" Tfh2 as well as Tfh17 cell subsets were revealed. Descriptions of peripheral blood B cells during an acute SARS-CoV-2 infection werev reported as relative B cell lymphopenia with decreased frequency of "naive" and memory B cell subsets, as well as increased level of CD27hiCD38hiCD24- plasma cell precursors and atypical CD21low B cells. Thus, the emerging evidence suggests that functional alterations occur in all Th cell subsets being linked with loss-of-functions of main Th cell subsets target cells. Furthermore, recovered individuals could suffer from long-term immune dysregulation and other persistent symptoms lasting for many months even after SARS-CoV-2 elimination, a condition referred to as post-acute COVID-19 syndrome.Copyright © 2022 Saint Petersburg Pasteur Institute. All rights reserved.

2.
Russian Journal of Infection and Immunity ; 12(3):409-423, 2022.
Article in Russian | EMBASE | ID: covidwho-2242349

ABSTRACT

Current review presents a brief overview of the immune system dysregulation during acute COVID-19 and illustrates the main alterations in peripheral blood CD4+ T-cell (Th) subsets as well as related target cells. Effects of dendritic cell dysfunction induced by SARS-CoV-2 exhibited decreased expression of cell-surface HLA-DR, CCR7 as well as co-stimulatory molecules CD80 and CD86, suggesting reduced antigen presentation, migratory and activation capacities of peripheral blood dendritic cells. SARS-CoV-2-specific Th cells could be detected as early as days 2–4 post-symptom onset, whereas the prolonged lack of SARS-CoV-2-specific Th cells was associated with severe and/or poor COVID-19 outcome. Firstly, in acute COVID-19 the frequency of Th1 cell was comparable with control levels, but several studies have reported about upregulated inhibitory immune checkpoint receptors and exhaustion-associated molecules (TIM3, PD-1, BTLA, TIGIT etc.) on circulating CD8+ T-cells and NK-cells, whereas the macrophage count was increased in bronchoalveolar lavage (BAL) samples. Next, type 2 immune responses are mediated mainly by Th2 cells, and several studies have revealed a skewing towards dominance of Th2 cell subset in peripheral blood samples from patients with acute COVID-19. Furthermore, the decrease of circulating main Th2 target cells — basophiles and eosinophils — were associated with severe COVID-19, whereas the lung tissue was enriched with mast cells and relevant mediators released during degranulation. Moreover, the frequency of peripheral blood Th17 cells was closely linked to COVID-19 severity, so that low level of Th17 cells was observed in patients with severe COVID-19, but in BAL the relative number of Th17 cells as well as the concentrations of relevant effector cytokines were dramatically increased. It was shown that severe COVID-19 patients vs. healthy control had higher relative numbers of neutrophils if compared, and the majority of patients with COVID-19 had increased frequency and absolute number of immature neutrophils with altered ROS production. Finally, the frequency of Tfh cells was decreased during acute COVID-19 infection. Elevated count of activated Tfh were found as well as the alterations in Tfh cell subsets characterized by decreased "regulatory” Tfh1 cell and increased "pro-inflammatory” Tfh2 as well as Tfh17 cell subsets were revealed. Descriptions of peripheral blood B cells during an acute SARS-CoV-2 infection werev reported as relative B cell lymphopenia with decreased frequency of "naïve” and memory B cell subsets, as well as increased level of CD27hiCD38hiCD24– plasma cell precursors and atypical CD21low B cells. Thus, the emerging evidence suggests that functional alterations occur in all Th cell subsets being linked with loss-of-functions of main Th cell subsets target cells. Furthermore, recovered individuals could suffer from long-term immune dysregulation and other persistent symptoms lasting for many months even after SARS-CoV-2 elimination, a condition referred to as post-acute COVID-19 syndrome.

3.
Infektsiya I Immunitet ; 12(3):409-426, 2022.
Article in Russian | Web of Science | ID: covidwho-2232127

ABSTRACT

Current review presents a brief overview of the immune system dysregulation during acute COVID-19 and illustrates the main alterations in peripheral blood CD4(+) T-cell (Th) subsets as well as related target cells. Effects of dendritic cell dysfunction induced by SARS-CoV-2 exhibited decreased expression of cell-surface HLA-DR, CCR7 as well as co-stimulatory molecules CD80 and CD86, suggesting reduced antigen presentation, migratory and activation capacities of peripheral blood dendritic cells. SARS-CoV-2- specific Th cells could be detected as early as days 2-4 post-symptom onset, whereas the prolonged lack of SARS-CoV-2-specific Th cells was associated with severe and/or poor COVID-19 outcome. Firstly, in acute COVID-19 the frequency of Th1 cell was comparable with control levels, but several studies have reported about upregulated inhibitory immune checkpoint receptors and exhaustion-associated molecules (TIM3, PD-1, BTLA, TIGIT etc.) on circulating CD8(+) T-cells and NK-cells, whereas the macrophage count was increased in bronchoalveolar lavage (BAL) samples. Next, type 2 immune responses are mediated mainly by Th2 cells, and several studies have revealed a skewing towards dominance of Th2 cell subset in peripheral blood samples from patients with acute COVID-19. Furthermore, the decrease of circulating main Th2 target cells - basophiles and eosinophils - were associated with severe COVID-19, whereas the lung tissue was enriched with mast cells and relevant mediators released during degranulation. Moreover, the frequency of peripheral blood Th17 cells was closely linked to COVID-19 severity, so that low level of Th17 cells was observed in patients with severe COVID-19, but in BAL the relative number of Th17 cells as well as the concentrations of relevant effector cytokines were dramatically increased. It was shown that severe COVID-19 patients vs. healthy control had higher relative numbers of neutrophils if compared, and the majority of patients with COVID-19 had increased frequency and absolute number of immature neutrophils with altered ROS production. Finally, the frequency of Tfh cells was decreased during acute COVID-19 infection. Elevated count of activated Tfh were found as well as the alterations in Tfh cell subsets characterized by decreased "regulatory" Tfh1 cell and increased "pro-inflammatory" Tfh2 as well as Tfh17 cell subsets were revealed. Descriptions of peripheral blood B cells during an acute SARS- CoV-2 infection werev reported as relative B cell lymphopenia with decreased frequency of "naive" and memory B cell subsets, as well as increased level of CD27(hi)CD38(hi)CD24(-) plasma cell precursors and atypical CD21(low) B cells. Thus, the emerging evidence suggests that functional alterations occur in all Th cell subsets being linked with loss-of-functions of main Th cell subsets target cells. Furthermore, recovered individuals could suffer from long-term immune dysregulation and other persistent symptoms lasting for many months even after SARS-CoV-2 elimination, a condition referred to as post-acute COVID-19 syndrome.

4.
Russian Journal of Infection and Immunity ; 12(3):409-423, 2022.
Article in Russian | EMBASE | ID: covidwho-1969871

ABSTRACT

Current review presents a brief overview of the immune system dysregulation during acute COVID-19 and illustrates the main alterations in peripheral blood CD4+ T-cell (Th) subsets as well as related target cells. Effects of dendritic cell dysfunction induced by SARS-CoV-2 exhibited decreased expression of cell-surface HLA-DR, CCR7 as well as co-stimulatory molecules CD80 and CD86, suggesting reduced antigen presentation, migratory and activation capacities of peripheral blood dendritic cells. SARS-CoV-2-specific Th cells could be detected as early as days 2–4 post-symptom onset, whereas the prolonged lack of SARS-CoV-2-specific Th cells was associated with severe and/or poor COVID-19 outcome. Firstly, in acute COVID-19 the frequency of Th1 cell was comparable with control levels, but several studies have reported about upregulated inhibitory immune checkpoint receptors and exhaustion-associated molecules (TIM3, PD-1, BTLA, TIGIT etc.) on circulating CD8+ T-cells and NK-cells, whereas the macrophage count was increased in bronchoalveolar lavage (BAL) samples. Next, type 2 immune responses are mediated mainly by Th2 cells, and several studies have revealed a skewing towards dominance of Th2 cell subset in peripheral blood samples from patients with acute COVID-19. Furthermore, the decrease of circulating main Th2 target cells — basophiles and eosinophils — were associated with severe COVID-19, whereas the lung tissue was enriched with mast cells and relevant mediators released during degranulation. Moreover, the frequency of peripheral blood Th17 cells was closely linked to COVID-19 severity, so that low level of Th17 cells was observed in patients with severe COVID-19, but in BAL the relative number of Th17 cells as well as the concentrations of relevant effector cytokines were dramatically increased. It was shown that severe COVID-19 patients vs. healthy control had higher relative numbers of neutrophils if compared, and the majority of patients with COVID-19 had increased frequency and absolute number of immature neutrophils with altered ROS production. Finally, the frequency of Tfh cells was decreased during acute COVID-19 infection. Elevated count of activated Tfh were found as well as the alterations in Tfh cell subsets characterized by decreased “regulatory” Tfh1 cell and increased “pro-inflammatory” Tfh2 as well as Tfh17 cell subsets were revealed. Descriptions of peripheral blood B cells during an acute SARS-CoV-2 infection werev reported as relative B cell lymphopenia with decreased frequency of “naïve” and memory B cell subsets, as well as increased level of CD27hiCD38hiCD24– plasma cell precursors and atypical CD21low B cells. Thus, the emerging evidence suggests that functional alterations occur in all Th cell subsets being linked with loss-of-functions of main Th cell subsets target cells. Furthermore, recovered individuals could suffer from long-term immune dysregulation and other persistent symptoms lasting for many months even after SARS-CoV-2 elimination, a condition referred to as post-acute COVID-19 syndrome.

5.
Russian Journal of Cardiology ; 25(10):214-220, 2020.
Article in Russian | Scopus | ID: covidwho-1016460

ABSTRACT

In February 2020, a pandemic of a SARS-CoV-2 infection was declared. The number of people who have been exposed to the novel coronavirus infection is steadily increasing around the world. Comparison of data on pathogenesis, clinical course, complications and outcomes with other respiratory viral infections, primarily caused by Betacoronavirus, gives reason to expect an increase in the number of patients after COVID-19 with long-term cardiovascular, respiratory and other complications. In the pathogenesis of possible complications, the leading role will be played by impaired immune function, primarily the adaptive immunity. This review examines the involvement of T-helpers and the humoral factors they produce in the pathogenesis of complications of viral (coronavirus) infections with cardiovascular and respiratory injury, as well as the known data on the genetic determination of cytokine-producing activity of these cells. © 2020, Silicea-Poligraf. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL